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ABSTRACT

Robotic grasping is a critical control task that involves in all areas of real-life
application scenarios all the way from manufacturing sites to regular households.
Due to the high practicality of robotic grasping task, the number of research
projects and products has been increasing significantly during the recent years.
With the emerging of data-driven machine learning techniques, more novel ideas
and methods have been proposed. However, most of the robotic problems have to
be solved in very complex environments which consists of both continuous and
discrete decision variables. While most of the current work rely on supervised
learning methods, e.g., GGCNN Morrison et al. (2018) or discretize continuous
action space Zeng et al. (2018). In this work, we hypothesize and experimentally
show that it is feasible to learn the robotic grasping task with hybrid action space
through deep reinforcement learning techniques. We define gripper position as a
discrete action variable and gripper rotation as a continuous action variable. We
propose Hybrid Policy Gradient (H-PG) method using both discrete and continu-
ous action variables which can achieve a noticeable better performance compared
with our baseline methods: Heuristic, GGCNN and Vanilla Policy Gradient
methods. You are welcomed to checkout our video demo of the project through
the link at https://www.youtube.com/watch?v=YFV3_CLpEdk

1

https://www.youtube.com/watch?v=YFV3_CLpEdk


CS285 Deep Reinforcement Learning Final Project

1 INTRODUCTION

Robotic grasping is a critical control task that involves in all areas of real-life application scenarios
all the way from manufacturing sites to regular households. Due to the high practicality of robotic
grasping task, the number of research projects and products has been increasing significantly during
recent years. With the emerging of data-driven machine learning techniques, more novel ideas and
methods have been proposed.

There has been some work Zeng et al. (2018); Quillen et al. (2018); Kalashnikov et al. (2018)
investigated the grasping task using supervised learning methods, e.g., GGCNN with either discrete
or continuous action spaces. However, most problems in robotics need to be solved in very complex
environments where the action space consists of both continuous and discrete decision variables.
For example, the grasping pixel position is a discrete variable while the rotation of the gripper is a
continuous variable.

As the result, this paper investigates the continuous-discrete hybrid set-up for robotic grasp planning
tasks. The specific task studied here is planning a planar grasp in a cluster environment given a depth
image, and it is modeled as a Deep Reinforcement Learning (DRL) problem with hybrid action
spaces. This paper proposes a Hybrid Policy Gradient (H-PG) method to solve the problem set-up.

We evaluate the grasping success rate for the proposed Hybrid Policy Gradient (H-PG) method com-
pared with multiple baseline methods: Grasp Heuristic Zeng et al. (2018) and Supervised Learning
methods, e.g., GGCNN Morrison et al. (2018) and the vanilla Policy Gradient method. The evalu-
ated results (single object grasp) showed the H-PG method outperforms all of the baseline methods
with YCB daily objects, e.g., Hammer, Banana, Pear, Tennis Ball, etc. Calli et al. (2015) The re-
sults clearly show the proposed H-PG approach can be used for solving the grasp planning task with
satisfying results in hybrid action spaces.

The rest of this paper is organized as follows. Related works are discussed in Section 2. The detailed
problem formulation will be discussed in Section 3. The main methods will be proposed in Section
4. Section 5 will introduce the experiment details and results. In the end, we will have conclusions
and further discussions in Section 6.

2 RELATED WORK

Grasping There have been many articles about Robotic grasping in the past 5 years. Basically, we
can classify them into 2 kinds of methods: Analytic and Empirical. Using analytic methods, we tend
not to get good results in real world due to the difficulty of modeling real world connections. Now,
most of the researchers have changed their attention to empirical methods. Empirical methods are
model-based or experience-based approaches.

Supervised learning Supervised learning is one kind of empirical methods. The procedure for su-
pervised learning is almost the same. It will first learn grasp quality function and then rank the points
with quality value. Finally, by choosing the optimal position, a robot in real world or simulator maps
the position in a picture to the position in 3D world. This method relates closely to the precision
of robot control and camera mapping. GG-CNN, inputs a depth map into the network and predicts
quality and pose of grasps at every pixel, successfully reduces the computation time and avoids the
discrete sampling of grasp candidates.

Hybrid RL Although there have been studies on hybrid DRL algorithms that mostly study computer
games Xiong et al. (2018); Bester et al. (2019a); Fan et al. (2019); Neunert et al. (2020); Delalleau
et al. (2019), few of them are verified in challenging robotic tasks, e.g., grasping in clusters. Be-
sides, most works in grasping community Zeng et al. (2018); Quillen et al. (2018); Kalashnikov
et al. (2018) commonly approximate hybrid action space as fully discrete or fully continuous space
without considering a hybrid definition. This work Zeng & et al. (2018) transforms the continuous
angle to 16 discontinuous fixed angles and gets a good result. Q-learning is normal in Reinforce-
ment learning grasping for estimating the state-action qualities with iterative updates. We want to
use Policy gradient on hybrid settings to see whether it may get a better result.
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(a) (b) (c)

Figure 1: (a) Scenerio of grasping in a bin. (b) Grasp configuration in world coordinate. (c) Grasp
configuration in image coordinate.

3 PROBLEM FORMULATION

In this section, we introduce the notions of the grasping task, and our formulation of the task as a
Markov decision process solved by deep RL method.

Grasp Representation Following the definition in the literature Johns et al. (2016), we consider the
problem of detecting a grasp configuration on objects in a bin, given a depth image of scene in the
bin. The scenario is shown in Figure 1a. Let the I ∈ RH×W define a depth image with height H
and W . As shown in Figure 1b and 1c, we define a three degree of freedom grasp configuration
g = (p, ϕ), which is perpendicular to the x-y plane. p = (u, v) is the gripper’s centre position in
image coordinates (pixels). ϕ is the gripper’s rotation around the camera’s z axis.

Bin Grasping as a MDP We formulate the grasping problem as a Markov decision process. At the
beginning of a rollout, a number of Nobj objects are randomly distributed in a bin. At time t, given
a depth image I as a state st capturing the poses of objects in the bin, the agent chooses an action
at according to a policy πst , at ∈ A and A is denoted as action space. The at is defined the same
as the grasp configuration g. During the execution of at, if the gripper successfully grasps an object
and stably lifts it up, the grasp is labeled as a success and an reward rt is granted. The grasped
object will be removed from the bin. After execution, the objects are manipulated by the gripper
and another depth image is taken capturing the updated object poses as the next state st+1. The goal
of RL problem is to find a optimal policy π∗ that maximizes the expected sum of reward in given
time length T given by Rt =

∑T
i=t ri. A rollout terminates when all the objects are grasped and

removed, or the elapsed time step reaches the limit T . At each time step t, the robot only plans and
executes one grasp at. In this work, we only study the problem of single object grasping, i.e., only
one object is thrown to the bin in one rollout, Nobj = 1.

Action Space For action at at time t, We consider a discrete-continuous hybrid action space A,
at ∈ A, A = (P,Φ), gripper’s centre position p ∈ P , gripper’s rotation ϕ ∈ Φ. P is a discrete
action space with dimension H × W , which is the number of pixels in the depth input. Φ is a
continuous action space, Φ ∈ [−π

2 ,
π
2 ].

Reward Calculation If a grasp is successful, a reward of 1 is granted, otherwise the reward is 0. A
successful grasp is defined as the following. If the object’s z coordinate is significantly above the
table ground for a period of time, we consider the object is stably grasped and lifted up.

Exploration For our proposed method, we use an unusual exploration policy. The normal explo-
ration strategy is random exploration. It just gets random action over the whole action space, which
is suitable for small action space. The action space defined is extremely large, as the dimension of
gripper position p is H ×W . If we use random policy, the sample efficiency is pretty low and takes
a long training time. Thus, we use a Heuristic method as our exploration policy, which will be de-
scribed in Section 5. The Heuristic policy will output about 30% successful grasp. The exploration
rate starts from 1 and linearly decays to 0.05 after 30 % of total iterations, then it remains 0.05 until
the end.
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Figure 2: Overview of hybrid RL system. FCN: fully convolutional network. MLP: multi-layer
perceptron.

4 METHODOLOGY

This section introduces the proposed hybrid RL system and the H-PG algorithm, and presents the
network architecture of PG actors.

4.1 SYSTEM OVERVIEW

As stated in Section 3, we define a hybrid action space A = (P,Φ), each action a ∈ A is comprised
of two sub-actions. The proposed hybrid policy πh predicts a hybrid action a = (p, ϕ) at each
timestep, which is comprised of one discrete action gripper centre p ∈ P and one continuous action
gripper rotation ϕ ∈ Φ. The gripper position p is conditioned on the state s (input depth image). It
means that we choose where to locate gripper’s centre based on the local geometric information of
depth image, e.g. a successful grasp is commonly located on the part of objects that could satisfy the
force closure criterion Ferrari & Canny (1992). The gripper rotation ϕ is conditioned on the state s
and gripper position p because when p changes, the local geometry could vary, ϕ should be adjusted.
We formulate the policy as:

π(a | s) = π(p, ϕ | s) (1a)
= π(p | s) · π(ϕ | s, p) (1b)
= πθp(p | s) · πθϕ(ϕ | s, p) (1c)

Based on the formulation, we build our RL system as shown in Figure 2. Given a depth image I as
state st at time t, the feature encoder encodes the st, and then condition on the feature embedding,
the discrete policy πθp uses actor network predicts a map Mp ∈ RH×W , which are totally H ×W
values for all the pixels, we form a discrete Categorical distribution based on the Mp, and the position
pt to take is random sampled by πθp(pt | st). The continuous policy πθϕ uses another actor network
outputs a map Mϕ ∈ RH×W , we use the value of Mϕ at pixel pt as the mean to form a Gaussian
distribution, the rotation ϕt to take is sampled by πθϕ(ϕt | st, pt). Therefore, a grasp action at =
(pt, ϕt) is sampled from our hybrid policy πh = (πθp , πθϕ).

4.2 HYBRID POLICY GRADIENT

The hybrid policy gradient optimization (H-PG) takes the hybrid actor architectures in Figure 2 and
uses online policy gradient as the policy optimization method for both its discrete policy πθp and
continuous policy πθϕ . For each iteration of training, we collect new data samples in simulation. In
the conventional policy gradient method, the policy update formula is given by

∇θJ(θ) ≈
1

N

N∑
n=1

(
T∑

t=1

∇θ log πθ (ai,t | si,t)

)
A(si,t, ai,t) (2)

θ ← θ +∇θJ(θ) (3)
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In H-PG, we update the hybrid policy as

∇θJ(θp) ≈
1

N

N∑
i=1

(
T∑

t=1

∇θp log πθp (pi,t | si,t)

)
A(si,t, ai,t)

∇θJ(θϕ) ≈
1

N

N∑
i=1

(
T∑

t=1

∇θϕ log πθϕ (ϕi,t | si,t, pi,t)

)
A(si,t, ai,t)

(4)

θp ← θp + α∇θJ(θp)

θϕ ← θϕ + α∇θJ(θϕ)
(5)

For the estimation of advantages A(st, at), we do not use a critic network and only use sum of
reward in a rollout, we use the reward-to-go techniques to minimize the variance.

A(st, at) =

T∑
t=t′

r (st′ , at′) (6)

H-PG has a unique training process designed to further reduce variance and stabilize policy updates.
Suppose we train the policy for 1500 iterations, for the first 150 iterations, we use the advantage
defined in Eqn. 6. Then for the following iterations, we freeze the feature encoder network, and
only update two actor networks. We reduce variance by standardizing the advantage as

A(τ) = r (τ)− 1

N

N∑
n=1

r(τ) (7)

To show the superiority of the training process in H-PG , we propose a baseline method called
Vanila-PG, in which we use advantages of Eqn. 6 for the whole training process. Another scratch
is to use standardized advantages at the beginning of training. However, we find that training from
scratch with advantage standardization makes the training fail in the early stage, shown as the eval-
uation average return remains to be unchanged. We analyze the underlying causes of this issue here.
The policy estimation in H-PG π(p|s) derived in 1b may not be accurate, a more reasonable formula-
tion is to predict p by π(p|s, ϕ), which means predicting position conditioning on state and rotation.
That is because a failed action could be caused by an incorrect ϕ when the p is correct, but using
standardized advantage of Eqn. 7 will also minimize π(p|s) instead of minimizing π(p|s, ϕ). In
Section 5.3, we show that using the proposed training process can well resolve this issue. Vanila-PG
is also able to tackle this issue in a “supervised-like” way, because the unstandardized advantage of
Eqn. 6 is 0 when an action (p, ϕ) fails, then the gradient∇θJ(θp) calculated based on this sample is
0, the actor won’t be updated. However, the evaluation performance of Vanila-PG is prone to fluc-
tuate in the middle of training, when the exploration rate drops a lot. Note that the heuristic-based
exploration used in our work gives the most positive demonstrations to agent.

4.3 NETWORK ARCHITECTURE

The feature encoder network and actor networks use a fully convolutional topology, similar to Satish
et al. (2019). The encoder includes four downsampling layers, two dilated layers and two upsam-
pling layers. Downsampling layers use kernel size of [11, 5, 5, 5], input feature dimensions of [1,
64, 64, 128] respectively, activated by ReLU and max-pooling. Two dilated layers apply [5, 5] ker-
nels with dilation [2, 4] and feature dimensions of [128, 256]. Upsampling layers employ transpose
convolutional kernels with size 3 and striding 2, feature dimensions of [256, 128]. The discrete and
continuous actor network has identical architecture, including three fully connected linear layers
activated by ReLU, the output feature dimensions of both networks are 1.

5 EXPERIMENTS & ANALYSES

5.1 EXPERIMENTAL SETUP

Simulator In order to perform and simulate our grasping task, we use the PyBullet simulator with
Fanuc LR Mate series 6DOF robotic arms. For the object to be grasped, we use the YCB Object Set
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Calli et al. (2015) which consists of objects from daily life with different physical properties. Since
some of the objects of the YCB Object Set are too large for LR Mate to grasp, we only include a
subset of objects including Banana, Hammer, Clamp, Pear, Power Drill, Scissors, Strawberry and
Tennis Ball. The grasping area is defined to be within the bin with a 100mm offset on the 4 sides to
avoid the gripper hitting on the bin edges. The camera was put 625mm above the desktop and could
get a depth image of size 128 × 128. See Figure 1. In this project, we only study the single object
grasp case.

Platform All network computations were performed on the same PC running Ubuntu 18.04.6 with
a 3.60GHz Intel Core i7-6850K CPU and NVIDIA GeForce 1080 graphics card. On this platform,
it takes about 3s to compute for 16 depth images.

Environment Setting Our experiment is single-object grasping. There will only be 1 object in the
box and no matter success or failure,it will reset the world for the next grasp. We evaluate with
4 different methods: Vanilla-PG, H-PG, GGCNN, Heuristic. We can take GGCNN and Heuristic
methods as our baseline. For each method, we evaluate with 2 environments with different numbers
of total objects: n = 50 and n = 100. For each environment we have five different seeds, the final
evaluation result is the average of the results on 5 different seeds.

Evaluation metric
In the training progress, we evaluate the performance of our methods by defining the Average
evaluation reward as:

total reward
total number of all grasps

When we compare our proposed methods with our baseline methods, we evaluate the performance
of our methods by defining the single object grasp success rate as:

total number of success grasps
total number of all grasps

These two methods are essentially the same. Because in the training progress, we give the successful
grasp with the reward 1, which means the total reward equals the total number of success grasps.
So Average evaluation reward is the same as single object grasp success rate for single grasp. We
evaluate our models with multiple simulator environment seeds and then calculate the average
success rate among all the seeds.

5.2 BASELINE METHODS

Heuristic We define the Heuristic policy as follows: for each depth image captured, we rotated the
image in 16 different angles. For each of the 16 rotated images, we shifted the image both vertically
and horizontally by a certain amount. We found the heuristically best action grasping location where
the original image differs the most from the rotated and shifted image.
GGCNN We use a convolutional Neural Network with 4 convolutional layers and 2 more dilated
convolutional layers. Our data set was built with 7000 successful grasp collected by Heuristic
method. 80% of the data set is training set and 20% is evaluation set.
Vanilla-PG Vanilla-PG shares the same network as our proposed method H-PG, but differs in ways
of calculating reward, loss and update network.Vanilla-PG only uses positive rewards, which means
it will not learn anything through the failure grasp.

5.3 MAIN RESULTS

Baseline Comparisons We first compare H-PG to three baselines in terms of grasp success rate
in single object grasping experiments. See Table 1, we show that among all the methods, H-PG
achieves the highest average success rate, and the lowest standard deviation. The superior perfor-
mance is consistent in settings of n = 50 and n = 100. The results support our hypothesis that the
formulation of grasping as a hybrid RL problem is feasible to solve even using the basic optimiza-
tion method policy gradient. More surprisingly, H-PG outperforms the important GGCNN baseline
Morrison et al. (2018) by 7.4%.
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Figure 3: Success rate of Vanilla-PG and H-PG

To seek the reason behind the phenomenon, H-PG can learn from both the success and failure grasp
while GGCNN and Vanilla-PG only learn from success grasp samples. Learning from failure case
means that H-PG minimizes π(p|s) and π(ϕ|p, s) when the action (grasp) a = (p, ϕ) fails, but for
other two baseline methods, the networks are not updated from failure cases. Therefore, H-PG is
proven to be more sample efficient, and has better generalization ability on grasping scenarios.

n=50 n=100
Heuristic 36.40± 7.12 36.67± 8.49

GGCNN (Morrison et al. (2018)) 37.60± 5.90 39.40± 5.03
Vanilla-PG 38.80± 5.31 31.40± 2.94

H-PG 40.40± 4.27 40.80± 4.53

Table 1: Evaluation (mean ± std) of models with multiple random seeds and various number of
grasp trials, Metrics are the average success rate for single grasps.

Training Dynamics As we can see from Figure 3,compared with Vanilla-PG, H-PG has less std
and has a higher success rate. The disadvantage of Vanilla-PG mainly lies in the lack of the ability
to learn from unsuccessful grasps. The loss is calculated as log probability times advantage. If all
advantages are 1 or 0, it will only get the loss from the grasps with reward 1(successful grasp). But in
H-PG, in the first 150 iterations, it is the same as Vanilla-PG.After 150 iterations, H-PG standardizes
the advantage and stabilizes the feature network. From this time, H-PG’s position and angle network
can learn from unsuccessful grasps since some of the standardized advantages are negative.

We also show the loss of GGCNN Training in Figure 4.We measure the loss for every epoch and
find that the loss reduces rapidly at about 10-15 epoch. Then it almost does not change.

(a) (b)

Figure 4: The validation loss of GGCNN network (a) Validation loss of GGCNN angle network (b)
validation loss of GGCNN quality network
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H-PG GGCNN (Morrison et al. (2018))

Depth Planned Grasp Probability Maps Planned Grasp Probability Maps

Figure 5: Comparing H-PG with supervised baseline GGCNN by visualizing the grasp annotation
and predicted probability. The column titled with “Depth” shows the input depth image, the column
titled with “Planned Grasp” shows the pose of parallel gripper when executing the grasp, and the
column titled with “Probability Maps” shows the probability maps predicted by the two methods,
the gripper position p is sampled based on the probability maps. The brighter color means the higher
probability, while darker means smaller probability.

Qualitative Results We show qualitative results to compare H-PG with the baseline method
GGCNN. See Figure 5. First, given the same depth image shown by the two columns titled with
“Planned Grasp” under H-PG and GGCNN. H-PG predicts more successful antipodal grasps, shown
as the red lines (pose of parallel gripper) are mostly perpendicular to flat plane structure. In particu-
lar, H-PG outperforms GGCNN in predicting grasps for large objects with less graspable parts like
hammer and power drill (last three rows). For these hard objects, both two methods have a tendency
to predict grasp points on the handles, but H-PG predicts better rotations to avoid the collision and
satisfy the force closure. Second, the probability maps is useful to analyze the underlying mecha-
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nism of deep grasping models. We can see that H-PG considers the most of areas of objects have
high probability to be execute as success grasps, shown as bulk of areas around objects with brighter
colors. It is reasonable for human beings because we can grasp an object from most of its parts by
adjusting hand pose (planar rotation). However, for GGCNN, the graspable areas are pretty sparse.
That might cause from the fact that the training dataset is sparsely labeled and only one successful
grasp is labeled for one depth image. Therefore, we see the limitation of supervised learning, as the
its accuracy and robustness would vary depending on whether the training data is densely labeled
or not. RL-based method like H-PG is able to resolve this issue, and achieves stable performance
invariant to data quality.

6 CONCLUSION AND DISCUSSION

This paper proposes a Hybrid Policy Gradient (H-PG) method to solve the robotic grasping tasks
with daily objects. The proposed method can achieve a 41% success rate of grasping daily objects
which shows a noticeable performance increase compared with the baseline models: Heuristic and
Supervised Learning Method, e.g., GGCNN and the vanilla Policy Gradient method.

For future works, we plan to train the policy to maximize the Q value as Deep Deterministic Policy
Gradient(DDPG) or other variants: Multi-Pass Deep Q-Networks(MP-DQN) Bester et al. (2019b)
or a Hybrid Maximum a Posteriori Policy Optimisation (MPO) Abdolmaleki et al. (2018)
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